High dimensional data clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-dimensional data clustering

Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example in image analysis. The difficulty is due to the fact that highdimensional data usually live in different low-dimensional subspaces hidden in the original space. This paper presents a family of Gaussian mixture models designed for highdimensional data which combine the ideas of subspace c...

متن کامل

Subspace Clustering of High Dimensional Data

Clustering suffers from the curse of dimensionality, and similarity functions that use all input features with equal relevance may not be effective. We introduce an algorithm that discovers clusters in subspaces spanned by different combinations of dimensions via local weightings of features. This approach avoids the risk of loss of information encountered in global dimensionality reduction tec...

متن کامل

The Challenges of Clustering High Dimensional Data

Cluster analysis divides data into groups (clusters) for the purposes of summarization or improved understanding. For example, cluster analysis has been used to group related documents for browsing, to find genes and proteins that have similar functionality, or as a means of data compression. While clustering has a long history and a large number of clustering techniques have been developed in ...

متن کامل

Attribute Selection for High Dimensional Data Clustering

We present a new method to select an attribute subset (with few or no loss of information) for high dimensional data clustering. Most of existing clustering algorithms loose some of their efficiency in high dimensional data sets. One possible solution is to use only a subset of the whole set of dimensions. But the number of possible dimension subsets is too large to be fully parsed. We use a he...

متن کامل

New Approaches for Clustering High Dimensional Data

JINZE LIU: New Approaches for Clustering High Dimensional Data. (Under the direction of Wei Wang.) Clustering is one of the most effective methods for analyzing datasets that contain a large number of objects with numerous attributes. Clustering seeks to identify groups, or clusters, of similar objects. In low dimensional space, the similarity between objects is often evaluated by summing the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: APTIKOM Journal on Computer Science and Information Technologies

سال: 2018

ISSN: 2528-2425,2528-2417

DOI: 10.11591/aptikom.j.csit.82